Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(5-Methylsulfanyl-1,3,4-thiadiazol-2-yl)acetamide

Guo-Ying Zhang

College of Chemistry and Life Science, Tianjin Normal University, Tianjin 300074, People's Republic of China Correspondence e-mail: hsxyzgy@mail.tjnu.edu.cn

Received 21 July 2009; accepted 31 July 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.029; wR factor = 0.078; data-to-parameter ratio = 13.0.

In the title compound, $C_5H_7N_3OS_2$, inversion dimers linked by pairs of N-H···N hydrogen bonds occur, forming $R_2^2(8)$ ring motifs. These dimers are arranged into chains *via* intermolecular C-H···O hydrogen bonds between the methylsulfanyl groups and the O atoms of the carbonyl groups. The acetamido-1,3,4-thiodiazole unit is essentially planar [r.m.s. deviation 0.045 (8) Å].

Related literature

For the applications of 1,3,4-thiodiazole and its derivatives in antimicrobial drugs and in the construction of metal-organic frameworks, see: Gardinier *et al.* (2007); Mrozek *et al.* (2000); Xue *et al.* (2008). For the synthesis, see: Clerici & Pocar (2001).

Experimental

Crystal data $C_5H_7N_3OS_2$ $M_r = 189.26$

Triclinic, $P\overline{1}$ a = 5.0797 (10) Å

b = 7.9894 (16)Å	Z = 2
c = 10.081 (2) Å	Mo $K\alpha$ radiation
$\alpha = 91.96 \ (3)^{\circ}$	$\mu = 0.62 \text{ mm}^{-1}$
$\beta = 90.94 \ (3)^{\circ}$	T = 293 K
$\gamma = 105.27 \ (3)^{\circ}$	$0.30 \times 0.30 \times 0.10 \text{ mm}$
V = 394.32 (14) Å ³	
Data collection	
Rigaku R-AXIS RAPID-S	3437 measured reflections
Absorption correction: multi-scan	1259 reflections with $I > 2\sigma(I)$
(SADABS: Bruker, 1998)	$R_{\rm int} = 0.016$
$T_{\min} = 0.836, T_{\max} = 0.941$	int
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.029$	H atoms treated by a mixture
$wR(F^2) = 0.078$	independent and constraine
S = 1.07	refinement

K[T > 20(T)] = 0.029	I atoms treated by a mixture of
$wR(F^2) = 0.078$	independent and constrained
S = 1.07	refinement
1382 reflections	$\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$
106 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N3 - H3 \cdots N2^{i} \\ C1 - H1 B \cdots O1^{ii} \end{array}$	0.77 (2) 0.96	2.12 (2) 2.58	2.881 (2) 3.289 (3)	173 (2) 131 (2)
Symmetry codes: (i) -	-x + 2, -y + 2,	-z + 2; (ii) $-x + 2$	+1, -y + 1, -z +	1.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We are grateful for financial support from the Program for Excellent Introduced Talents of Tianjin Normal University in China (No. 5RL052).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2155).

References

Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Clerici, F. & Pocar, D. (2001). J. Med. Chem. 44, 931-936.
- Gardinier, J. R., Silva, R. M., Gwengo, C. & Lindeman, S. V. (2007). *Chem. Commun.* pp. 1524–1526.

Mrozek, A., Karolak-Wojciechowska, J., Amiel, P. & Barbe, J. (2000). J. Mol. Struct. 524, 159–167.

Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Xue, D.-X., Zhang, W.-X., Chen, X.-M. & Wang, H.-Z. (2008). Chem. Commun. pp. 1551–1553. supplementary materials

Acta Cryst. (2009). E65, o2138 [doi:10.1107/S1600536809030554]

N-(5-Methylsulfanyl-1,3,4-thiadiazol-2-yl)acetamide

G.-Y. Zhang

Comment

1,3,4-Thiodiazole is important for biological systems, and its derivatives have attracted widespread interest due to their further expanded application in antimicrobial drugs and in the construction of some interesting metal-organic frameworks (Gardinier *et al.*, 2007; Mrozek *et al.*, 2000; Xue *et al.*, 2008). Recently, we synthesized a new thiodiazole-ligand, namely 2-acetamido-5-methylmercapto-1,3,4-thiodiazole, (I). Herein we report the crystal structure of this ligand.

The molecular structure of (I) is shown in Fig. 1. The acetamido-1,3,4-thiodiazole moiety is essentially planar (r.m.s. deviation 0.045 (8) Å), forming a dihedral angle with the C1, S1 and C2 plane of atoms of 14.6 (9)°. In the crystal, inversion dimers linked by pairs of N—H…N hydrogen bonds occur, forming $R_2^2(8)$ ring motifs. These dimers are arranged into chains *via* intermolecular C—H…O hydrogen bonds between the methyl groups and the O atoms of the carbonyl groups (Fig. 2).

Experimental

The title compound was prepared according to the literature (Clerici *et al.*, 2001). 5-Methylsulfanyl-1,3,4-thiadiazol-2-ylamine (3.239 g, 0.022 mol) was suspended in acetic anhydride (2.28 ml, 0.024 mol), and acetic acid (9 ml) was added under stirring. The reaction mixture was further stirred at 313 K for 20 min. After cooling, water (10 ml) was added to the mixture, and then the precipitate was recrystallized in EtOH, which gave single crystals suitable for X-ray diffraction analysis (yield: 3.331 g, 80%).

Refinement

All H atoms bound to C atoms were geometrically positioned and refined using a riding model, with C—H = 0.96 Å and $U_{iso}(H) = U_{eq}(C)$. H atom on amino N was located from difference Fourier map and its position was refined freely, with $U_{iso}(H) = U_{eq}(N)$. The refined N—H distance is 0.77 (2) Å.

Figures

Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. The chain structure linked by N—H…N (pink) and C—H…O (blue) hydrogen bonds in (I).

$\it N-(5-Methyl sulfanyl-1,3,4-thiadiazol-2-yl) acetamide$

Crystal data	
C ₅ H ₇ N ₃ OS ₂	<i>Z</i> = 2
$M_r = 189.26$	$F_{000} = 196$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.594 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 5.0797 (10) Å	Cell parameters from 3437 reflections
b = 7.9894 (16) Å	$\theta = 3.3 - 27.6^{\circ}$
c = 10.081 (2) Å	$\mu = 0.62 \text{ mm}^{-1}$
$\alpha = 91.96 (3)^{\circ}$	T = 293 K
$\beta = 90.94 \ (3)^{\circ}$	Block, yellow
$\gamma = 105.27 \ (3)^{\circ}$	$0.30 \times 0.30 \times 0.10 \text{ mm}$
$V = 394.32 (14) \text{ Å}^3$	

Data collection

Rigaku R-AXIS RAPID-S diffractometer	1382 independent reflections
Radiation source: fine-focus sealed tube	1259 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.016$
T = 293 K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 3.3^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1998)	$h = -6 \rightarrow 6$
$T_{\min} = 0.836, T_{\max} = 0.941$	$k = -9 \rightarrow 9$
3437 measured reflections	$l = -11 \rightarrow 11$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.078$	$w = 1/[\sigma^2(F_o^2) + (0.0418P)^2 + 0.1675P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\text{max}} = 0.001$
1382 reflections	$\Delta \rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$
106 parameters	$\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.8654 (4)	0.6728 (3)	0.3920 (2)	0.0434 (5)
H1A	0.8055	0.5632	0.4333	0.065*
H1B	0.9004	0.6534	0.3002	0.065*
H1C	0.7261	0.7336	0.3984	0.065*
C2	1.0570 (4)	0.8285 (2)	0.63353 (18)	0.0267 (4)
C3	0.8380 (4)	0.8321 (2)	0.83774 (18)	0.0260 (4)
C4	0.4332 (4)	0.6973 (2)	0.95823 (19)	0.0282 (4)
C5	0.2992 (4)	0.7042 (3)	1.0889 (2)	0.0358 (5)
H5A	0.1062	0.6539	1.0780	0.054*
H5B	0.3327	0.8229	1.1205	0.054*
H5C	0.3730	0.6404	1.1521	0.054*
Н3	0.732 (5)	0.878 (3)	1.008 (2)	0.039 (7)*
N1	1.2055 (3)	0.9415 (2)	0.71786 (16)	0.0324 (4)
N2	1.0764 (3)	0.9425 (2)	0.83800 (16)	0.0312 (4)
N3	0.6785 (3)	0.8170 (2)	0.94718 (17)	0.0300 (4)
01	0.3383 (3)	0.59336 (19)	0.86769 (14)	0.0406 (4)
S1	1.17277 (10)	0.80015 (7)	0.47435 (5)	0.03824 (18)
S2	0.74395 (9)	0.71212 (6)	0.69103 (5)	0.02978 (17)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0426 (13)	0.0547 (14)	0.0290 (11)	0.0073 (11)	-0.0009 (9)	-0.0095 (10)
C2	0.0247 (9)	0.0298 (10)	0.0247 (9)	0.0057 (7)	0.0016 (7)	0.0004 (7)
C3	0.0256 (10)	0.0268 (9)	0.0237 (10)	0.0041 (8)	0.0004 (7)	-0.0039 (7)
C4	0.0253 (10)	0.0280 (10)	0.0298 (10)	0.0046 (8)	0.0011 (8)	-0.0005 (8)
C5	0.0328 (11)	0.0379 (11)	0.0336 (11)	0.0036 (9)	0.0085 (9)	0.0009 (9)
N1	0.0286 (9)	0.0358 (9)	0.0290 (9)	0.0021 (7)	0.0051 (7)	-0.0041 (7)
N2	0.0264 (9)	0.0336 (9)	0.0279 (9)	-0.0012 (7)	0.0038 (7)	-0.0062 (7)
N3	0.0266 (9)	0.0327 (9)	0.0246 (9)	-0.0017 (7)	0.0023 (7)	-0.0087 (7)
O1	0.0339 (8)	0.0409 (8)	0.0369 (8)	-0.0064 (6)	0.0029 (6)	-0.0117 (7)
S1	0.0323 (3)	0.0532 (4)	0.0271 (3)	0.0080 (2)	0.0066 (2)	-0.0043 (2)

supplementary materials

S2	0.0256 (3)	0.0336 (3)	0.0247 (3)	-0.0007 (2)	0.00124 (19)	-0.00701 (19)
Geometric param	neters (Å, °)					
C1—S1		1,796 (2)	C3		1.724	44 (19)
C1—H1A		0.9600	C4		1.21	6 (2)
C1—H1B		0.9600	C4	—N3	1.36	5 (3)
C1—H1C		0.9600	C4	—C5	1.49	9 (3)
C2—N1		1.294 (3)	C5	—Н5А	0.96	00
C2—S2		1.737 (2)	C5	—Н5В	0.96	00
C2—S1		1.7457 (19)	C5	—Н5С	0.96	00
C3—N2		1.297 (2)	N1	—N2	1.38	7 (2)
C3—N3		1.369 (3)	N3	—Н3	0.77	(2)
S1—C1—H1A		109.5	N3	—C4—C5	114.8	83 (17)
S1—C1—H1B		109.5	C4	—С5—Н5А	109.:	5
H1A—C1—H1B		109.5	C4	—С5—Н5В	109.:	5
S1—C1—H1C		109.5	Н5	БА—С5—Н5В	109.:	5
H1A—C1—H1C		109.5	C4	—С5—Н5С	109.:	5
H1B-C1-H1C		109.5	Н5	A—C5—H5C	109.:	5
N1—C2—S2		115.25 (14)	Н5	Б — С5—Н5С	109.:	5
N1-C2-S1		120.67 (15)	C2	—N1—N2	111.3	35 (16)
S2—C2—S1		124.08 (11)	C3	—N2—N1	112.7	70 (15)
N2—C3—N3		120.95 (17)	C4	—N3—C3	124.	71 (17)
N2—C3—S2		114.78 (14)	C4	—N3—H3	117.4	4 (18)
N3—C3—S2		124.27 (14)	C3	—N3—H3	117.8	8 (18)
O1—C4—N3		121.00 (18)	C2	—S1—C1	101	30 (10)
O1—C4—C5		124.16 (18)	C3	—S2—C2	85.9	1 (9)
S2—C2—N1—N	2	0.3 (2)	S2-		4.8 (3)
S1—C2—N1—N	2	-179.74 (13)	N1		-166	5.91 (17)
N3—C3—N2—N	1	-178.87 (17)	S2-		13.04	4 (15)
S2—C3—N2—N	1	0.6 (2)	N2	C3C2	-0.3	5 (15)
C2—N1—N2—C	3	-0.6 (2)	N3	—C3—S2—C2	179.	09 (17)
O1—C4—N3—C	3	-0.2 (3)	N1		0.01	(16)
C5—C4—N3—C	3	178.85 (18)	S1-		-179	9.95 (13)
N2—C3—N3—C	4	-175.77 (18)				

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$		
N3—H3···N2 ⁱ	0.77 (2)	2.12 (2)	2.881 (2)	173 (2)		
C1—H1B···O1 ⁱⁱ	0.96	2.58	3.289 (3)	131 (2)		
Symmetry codes: (i) $-x+2$, $-y+2$, $-z+2$; (ii) $-x+1$, $-y+1$, $-z+1$.						

Fig. 1

Fig. 2

